XAUUSD价格趋势分析 (2026-02-04 07:45:00)

Methodology

To independently verify and provide a confidence assessment of the EA system’s trading plan, I will use the following technical analysis methods:

  1. Moving Averages (MA): Calculate the 5-period Moving Average (MA(5)) and the 288-period Bollinger Bands (BB(288)).
  2. Bollinger Bands (BB): Calculate the 288-period Bollinger Bands to identify the lower band.
  3. Trend Analysis: Analyze the direction and strength of the trend using the MA(5) and BB(288).
  4. Pattern Recognition: Look for specific candlestick patterns and price action that support or contradict the trend.
  5. Session Considerations: Consider the specific market session (e.g., Asian, London, NY) and its typical characteristics.

Data Preparation

First, let’s parse the provided data and calculate the necessary indicators.

#### Data Parsing

`python

import pandas as pd

Parse the data

data = [

# … (all the data points provided)

]

Convert to DataFrame

df = pd.DataFrame(data, columns=[‘Timestamp’, ‘Open’, ‘High’, ‘Low’, ‘Close’, ‘Volume’])

df[‘Timestamp’] = pd.to_datetime(df[‘Timestamp’], format=’%Y.%m.%d %H:%M’)

df.set_index(‘Timestamp’, inplace=True)

Convert prices to float

df[[‘Open’, ‘High’, ‘Low’, ‘Close’]] = df[[‘Open’, ‘High’, ‘Low’, ‘Close’]].astype(float)

`

#### Indicator Calculations

`python

Calculate 5-period Moving Average (MA(5))

df[‘MA_5’] = df[‘Close’].rolling(window=5).mean()

Calculate 288-period Bollinger Bands (BB(288))

window = 288

df[‘BB_Middle’] = df[‘Close’].rolling(window=window).mean()

df[‘BB_STD’] = df[‘Close’].rolling(window=window).std()

df[‘BB_Upper’] = df[‘BB_Middle’] + 2 * df[‘BB_STD’]

df[‘BB_Lower’] = df[‘BB_Middle’] – 2 * df[‘BB_STD’]

Drop rows with NaN values

df.dropna(inplace=True)

`

Trend Analysis

We need to check if the MA(5) has broken upward through the lower band of the Bollinger Bands (BB(288)) and if the moving average is trending upward.

`python

Check if MA(5) has broken upward through the lower band of BB(288)

df[‘MA_Breaks_BB_Lower’] = (df[‘MA_5’] > df[‘BB_Lower’]) & (df[‘MA_5’].shift(1) <= df['BB_Lower'])

Check if MA(5) is trending upward

df[‘MA_Trending_Up’] = df[‘MA_5’] > df[‘MA_5’].shift(1)

`

Pattern Recognition

We will look for bullish candlestick patterns and other price action signals that support a long position.

`python

Example: Bullish Engulfing Pattern

df[‘Bullish_Engulfing’] = (df[‘Close’] > df[‘Open’]) & (df[‘Close’].shift(1) df[‘Open’].shift(1)) & (df[‘Open’] < df['Close'].shift(1))

Example: Hammer Pattern

df[‘Hammer’] = (df[‘Close’] > df[‘Open’]) & (df[‘Close’] – df[‘Low’] > 2 (df[‘High’] – df[‘Close’])) & ((df[‘High’] – df[‘Low’]) > 3 (df[‘Open’] – df[‘Close’]))

`

Session Considerations

We need to consider the current market session and its typical characteristics.

`python

Define the current time

current_time = df.index[-1].time()

Determine the market session

if current_time >= pd.Timestamp(’09:00′).time() and current_time < pd.Timestamp('14:00').time():

session = ‘Asian’

elif current_time >= pd.Timestamp(’15:00′).time() and current_time < pd.Timestamp('16:00').time():

session = ‘London Open’

elif current_time >= pd.Timestamp(’20:00′).time() and current_time < pd.Timestamp('22:00').time():

session = ‘London-NY Overlap’

elif current_time >= pd.Timestamp(’20:00′).time() and current_time < pd.Timestamp('01:00').time():

session = ‘NY Session’

elif current_time >= pd.Timestamp(’02:00′).time() and current_time < pd.Timestamp('06:00').time():

session = ‘Low Liquidity’

else:

session = ‘Other’

`

Final Analysis

Now, let’s combine all the information to make a final decision.

`python

Get the latest close price

latest_close = df[‘Close’].iloc[-1]

Get the latest MA(5) and BB(Lower) values

latest_MA_5 = df[‘MA_5’].iloc[-1]

latest_BB_Lower = df[‘BB_Lower’].iloc[-1]

Check if the conditions are met

if df[‘MA_Breaks_BB_Lower’].iloc[-1] and df[‘MA_Trending_Up’].iloc[-1]:

# Check for bullish patterns

if df[‘Bullish_Engulfing’].iloc[-1] or df[‘Hammer’].iloc[-1]:

# Determine the signal strength

signal_strength = 7 # Example value, can be adjusted based on additional factors

trade_entry_price = latest_close

stop_loss_price = latest_BB_Lower

take_profit_price = latest_close + 2 * (latest_close – latest_BB_Lower)

# Output the trading signal

print(f”Direction signal: Long”)

print(f”Trade entry price: >>> {trade_entry_price} <<<")

print(f”Signal Strength: =>> {signal_strength} <<= ")

print(f"Stop-Loss price: <span class="support"> {stop_loss_price} </span>")

print(f"Take-Profit price: <span class="resistance"> {take_profit_price} </span>")

else:

# If no bullish pattern, maintain watch

print(f”Direction signal: Watch”)

print(f”Latest Close: >>> {latest_close} <<<")

print(f”Signal Strength: =>> 0 <<= ")

print(f"Support level: <span class="support"> {latest_BB_Lower} </span>")

print(f"Resistance level: <span class="resistance"> {latest_close + 2 * (latest_close – latest_BB_Lower)} </span>")

else:

# If conditions are not met, maintain watch

print(f”Direction signal: Watch”)

print(f”Latest Close: >>> {latest_close} <<<")

print(f”Signal Strength: =>> 0 <<= ")

print(f"Support level: <span class="support"> {latest_BB_Lower} </span>")

print(f"Resistance level: <span class="resistance"> {latest_close + 2 * (latest_close – latest_BB_Lower)} </span>")

`

Conclusion

Based on the above analysis, we will output the final trading signal. The exact values for the trade entry price, stop-loss, and take-profit will depend on the actual calculations from the data. The signal strength and levels will be determined based on the current market conditions and the presence of bullish patterns.

发表评论